Revision as of 19:38, 18 November 2023 by Admin (Created page with "Two immediate annuities have the following characteristics: X: <math>\quad</math> Pays <math>1 / m, m</math> times per year, for 10 years Y: <math>\quad</math> Pays <math>P</math> at the end of years 2, 4, 6, 8, and 10 You are given #The accumulated value at time 1 of <math>1 / m</math> paid at times <math>1 / m, 2 / m, \ldots, 1</math> is 1.0331 . #<math>\quad s_2=2.075</math>. #The present value of <math>X</math> equals the present value of <math>Y</math>. Calcula...")
ABy Admin
Nov 18'23
Exercise
Two immediate annuities have the following characteristics:
X: [math]\quad[/math] Pays [math]1 / m, m[/math] times per year, for 10 years
Y: [math]\quad[/math] Pays [math]P[/math] at the end of years 2, 4, 6, 8, and 10
You are given
- The accumulated value at time 1 of [math]1 / m[/math] paid at times [math]1 / m, 2 / m, \ldots, 1[/math] is 1.0331 .
- [math]\quad s_2=2.075[/math].
- The present value of [math]X[/math] equals the present value of [math]Y[/math].
Calculate [math]P[/math].
- 1.94
- 2.01
- 2.03
- 2.07
- 2.14
ABy Admin
Nov 18'23
Solution: E
The present value of annuity [math]\mathrm{X}[/math] is [math]1.0331 a_{10}=1.0331 \frac{1-v^{10}}{i}[/math]. The present value of annuity [math]\mathrm{Y}[/math] is [math]P\left(v^2+\cdots+v^{10}\right)=P \frac{v^2-v^{12}}{1-v^2}=P \frac{1-v^{10}}{(1+i)^2-1}[/math]. Equating the present values and solving,
[[math]]
P=1.0331 \frac{(1+i)^2-1}{i}=1.0331 s_{\overline{2} \mid}=1.0331(2.075)=2.14
[[/math]]