Revision as of 19:40, 18 November 2023 by Admin (Created page with "'''Solution: E''' The present value of annuity <math>\mathrm{X}</math> is <math>1.0331 a_{10}=1.0331 \frac{1-v^{10}}{i}</math>. The present value of annuity <math>\mathrm{Y}</math> is <math>P\left(v^2+\cdots+v^{10}\right)=P \frac{v^2-v^{12}}{1-v^2}=P \frac{1-v^{10}}{(1+i)^2-1}</math>. Equating the present values and solving, <math display = "block"> P=1.0331 \frac{(1+i)^2-1}{i}=1.0331 s_{\overline{2} \mid}=1.0331(2.075)=2.14 </math> {{soacopyright | 2023 }}")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Exercise


ABy Admin
Nov 18'23

Answer

Solution: E

The present value of annuity [math]\mathrm{X}[/math] is [math]1.0331 a_{10}=1.0331 \frac{1-v^{10}}{i}[/math]. The present value of annuity [math]\mathrm{Y}[/math] is [math]P\left(v^2+\cdots+v^{10}\right)=P \frac{v^2-v^{12}}{1-v^2}=P \frac{1-v^{10}}{(1+i)^2-1}[/math]. Equating the present values and solving,

[[math]] P=1.0331 \frac{(1+i)^2-1}{i}=1.0331 s_{\overline{2} \mid}=1.0331(2.075)=2.14 [[/math]]

Copyright 2023 . The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

00