Revision as of 21:59, 18 November 2023 by Admin (Created page with "'''Solution: A''' <math display="block"> P V_X=2500\left[\frac{1-\left(\frac{1.05}{1.04}\right)^{20}}{0.04-0.05}\right]=52,732.61 </math> Annuity <math>\mathrm{Y}</math> has the same increasing percentage as interest rate, so: <math display="block"> \begin{aligned} & P V_Y=30 k \\ & P V_X=P V_Y \implies k=1757.75 \end{aligned} </math> {{soacopyright | 2023 }}")
Exercise
Nov 18'23
Answer
Solution: A
[[math]]
P V_X=2500\left[\frac{1-\left(\frac{1.05}{1.04}\right)^{20}}{0.04-0.05}\right]=52,732.61
[[/math]]
Annuity [math]\mathrm{Y}[/math] has the same increasing percentage as interest rate, so:
[[math]]
\begin{aligned}
& P V_Y=30 k \\
& P V_X=P V_Y \implies k=1757.75
\end{aligned}
[[/math]]