Revision as of 21:01, 18 November 2023 by Admin (Created page with "'''Solution: A''' The present value of the two payments is: <math display="block"> 1,000,000+\frac{1,000,000}{1.04^5}=1,821,927.07 </math> The present value of the perpetuity is: <math display="block"> \begin{aligned} & (1.04)\left[\frac{X}{0.04}+\frac{1000}{0.04^2}\right]=1,821,927.07 \\ & {\left[\frac{X}{0.04}+\frac{1000}{0.04^2}\right]=1,751,852.99} \\ & \frac{X}{0.04}=1,126,852.99 \\ & X=45,074.12 \end{aligned} </math> {{soacopyright | 2023 }}")
Exercise
ABy Admin
Nov 18'23
Answer
Solution: A
The present value of the two payments is:
[[math]]
1,000,000+\frac{1,000,000}{1.04^5}=1,821,927.07
[[/math]]
The present value of the perpetuity is:
[[math]]
\begin{aligned}
& (1.04)\left[\frac{X}{0.04}+\frac{1000}{0.04^2}\right]=1,821,927.07 \\
& {\left[\frac{X}{0.04}+\frac{1000}{0.04^2}\right]=1,751,852.99} \\
& \frac{X}{0.04}=1,126,852.99 \\
& X=45,074.12
\end{aligned}
[[/math]]