Revision as of 22:01, 18 November 2023 by Admin (Created page with "'''Solution: D''' Year <math>t</math> principal repaid is <math>i a_{\overline{n-t+1}|i}=1-\nu^{n-t+1}.</math> Year <math>t+1</math> interest is <math>1-\bigl(1-{y^{n-t}}\bigr)={\nu}^{n-t} </math> <math>X=1-\nu^{n-t+1}+\nu^{n-t}=1+\nu^{n-t}(1-\nu)=1+\nu^{n-t}d.</math> {{soacopyright | 2023 }}")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Exercise


ABy Admin
Nov 18'23

Answer

Solution: D

Year [math]t[/math] principal repaid is [math]i a_{\overline{n-t+1}|i}=1-\nu^{n-t+1}.[/math]

Year [math]t+1[/math] interest is [math]1-\bigl(1-{y^{n-t}}\bigr)={\nu}^{n-t} [/math]

[math]X=1-\nu^{n-t+1}+\nu^{n-t}=1+\nu^{n-t}(1-\nu)=1+\nu^{n-t}d.[/math]

Copyright 2023 . The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

00