Revision as of 23:22, 18 November 2023 by Admin (Created page with "'''Solution: D''' The amount of the loan is the present value of the deferred increasing annuity: <math display = "block"> (1.05)^{-10}\left[500\ddot{a}_{\overline{{{300}}}|0.05}+500(I\ddot{a})_{\overline{{{300}}}|0.05}\right] = (1.05^{-10})(500)\Bigg[\ddot{a}_{\overline{{{300}}}|0.05}+\frac{\ddot{a}_{\overline{{{300}}}|0.05}-30(1.05)^{-30}}{0.05/1.05}\Bigg]=64,257. </math> {{soacopyright | 2023 }}")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Exercise


ABy Admin
Nov 18'23

Answer

Solution: D

The amount of the loan is the present value of the deferred increasing annuity:

[[math]] (1.05)^{-10}\left[500\ddot{a}_{\overline{{{300}}}|0.05}+500(I\ddot{a})_{\overline{{{300}}}|0.05}\right] = (1.05^{-10})(500)\Bigg[\ddot{a}_{\overline{{{300}}}|0.05}+\frac{\ddot{a}_{\overline{{{300}}}|0.05}-30(1.05)^{-30}}{0.05/1.05}\Bigg]=64,257. [[/math]]

Copyright 2023 . The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

00