Revision as of 18:00, 19 November 2023 by Admin (Created page with "Sue purchased a 10-year par value bond with an annual nominal coupon rate of 4% payable semiannually at a price of 1021.50. The bond can be called at par value X on any coupon date starting at the end of year 5. The lowest yield rate that Sue can possibly receive is an annual nominal rate of 6% convertible semiannually. Calculate X. <ul class="mw-excansopts"><li>1120</li><li>1140</li><li>1160</li><li>1180</li><li>1200</li></ul> {{soacopyright | 2023 }}")
ABy Admin
Nov 19'23
Exercise
Sue purchased a 10-year par value bond with an annual nominal coupon rate of 4% payable semiannually at a price of 1021.50. The bond can be called at par value X on any coupon date starting at the end of year 5. The lowest yield rate that Sue can possibly receive is an annual nominal rate of 6% convertible semiannually.
Calculate X.
- 1120
- 1140
- 1160
- 1180
- 1200
ABy Admin
Nov 19'23
Solution: E
Given the coupon rate is less than the yield rate, the bond sells at a discount. Thus, the minimum yield rate for this callable bond is calculated based on a call at the latest possible date because that is most disadvantageous to the bond holder (latest time at which a gain occurs). Thus, X, the par value, which equals the redemption value because the bond is a par value bond, must satisfy
[[math]]
\mathrm{Price} = 1021.50=0.02\,X a_{\overline{200}|0.03}^{}+X v^{20}_{0.03}=0.851225\,X\Rightarrow X=1200.
[[/math]]