Revision as of 18:41, 19 November 2023 by Admin (Created page with "'''Solution: A''' The effective semi-annual yield rate is <math display = "block"> 1.04=\left(1+\frac{i^{(2)}}{2}\right)^{2}=>\frac{i^{(2)}}{2}=1.9804\% </math> Then, <math display = "block"> \begin{array}{l}{{582.53=c(1.02) v+c(1.02 v)^{2}+\cdots+c(1.02 v)^{12}+250 v^{12}}}\\ {{=c{\frac{1.02 v-(1.02 v)^{13}}{1-1.02 v}}+250 v^{12}=12.015c+197.579=c=32.04.}}\\ {{582.53=c{\frac{1.02 v-(1.02 v)^{13}}{1-1.02 v}}+250 v^{12}=12.015c+197.579=c=32.04.}}\end{array} </math>...")
Exercise
ABy Admin
Nov 19'23
Answer
Solution: A
The effective semi-annual yield rate is
[[math]]
1.04=\left(1+\frac{i^{(2)}}{2}\right)^{2}=\gt\frac{i^{(2)}}{2}=1.9804\%
[[/math]]
Then,
[[math]]
\begin{array}{l}{{582.53=c(1.02) v+c(1.02 v)^{2}+\cdots+c(1.02 v)^{12}+250 v^{12}}}\\ {{=c{\frac{1.02 v-(1.02 v)^{13}}{1-1.02 v}}+250 v^{12}=12.015c+197.579=c=32.04.}}\\ {{582.53=c{\frac{1.02 v-(1.02 v)^{13}}{1-1.02 v}}+250 v^{12}=12.015c+197.579=c=32.04.}}\end{array}
[[/math]]