Revision as of 18:41, 19 November 2023 by Admin (Created page with "'''Solution: A''' The effective semi-annual yield rate is <math display = "block"> 1.04=\left(1+\frac{i^{(2)}}{2}\right)^{2}=>\frac{i^{(2)}}{2}=1.9804\% </math> Then, <math display = "block"> \begin{array}{l}{{582.53=c(1.02) v+c(1.02 v)^{2}+\cdots+c(1.02 v)^{12}+250 v^{12}}}\\ {{=c{\frac{1.02 v-(1.02 v)^{13}}{1-1.02 v}}+250 v^{12}=12.015c+197.579=c=32.04.}}\\ {{582.53=c{\frac{1.02 v-(1.02 v)^{13}}{1-1.02 v}}+250 v^{12}=12.015c+197.579=c=32.04.}}\end{array} </math>...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Exercise


ABy Admin
Nov 19'23

Answer

Solution: A

The effective semi-annual yield rate is

[[math]] 1.04=\left(1+\frac{i^{(2)}}{2}\right)^{2}=\gt\frac{i^{(2)}}{2}=1.9804\% [[/math]]

Then,

[[math]] \begin{array}{l}{{582.53=c(1.02) v+c(1.02 v)^{2}+\cdots+c(1.02 v)^{12}+250 v^{12}}}\\ {{=c{\frac{1.02 v-(1.02 v)^{13}}{1-1.02 v}}+250 v^{12}=12.015c+197.579=c=32.04.}}\\ {{582.53=c{\frac{1.02 v-(1.02 v)^{13}}{1-1.02 v}}+250 v^{12}=12.015c+197.579=c=32.04.}}\end{array} [[/math]]

Copyright 2023 . The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

00