Revision as of 19:14, 19 November 2023 by Admin (Created page with "'''Solution: B''' Let r be the coupon rate for Bond A. The coupon rate for Bond B is then r + 0.01. Then, <math display = "block"> \begin{align*} 1600=1000\left[\frac{1}{(1.1)^{20}}+r a_{\overline{{{20}}}|0.1}+\frac{1}{(1.1)^{20}}+(r+0.01)a_{\overline{{{20}}}|0.1}^{}\right] \\ 1.6=\frac{2}{(1.1)^{20}}+2r a_{\overline{{{20}}}|0.1}+0.01a_{\overline{{{20}}}|0.1}+0.01a_{\overline{{{20}}}|0.1}=0.29729+17.02713r+0.08514 \\ r=\frac{1.6-0.29729-0.08514}{17.02713}=0.0715=7.15\%...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Exercise


ABy Admin
Nov 19'23

Answer

Solution: B

Let r be the coupon rate for Bond A. The coupon rate for Bond B is then r + 0.01. Then,

[[math]] \begin{align*} 1600=1000\left[\frac{1}{(1.1)^{20}}+r a_{\overline{{{20}}}|0.1}+\frac{1}{(1.1)^{20}}+(r+0.01)a_{\overline{{{20}}}|0.1}^{}\right] \\ 1.6=\frac{2}{(1.1)^{20}}+2r a_{\overline{{{20}}}|0.1}+0.01a_{\overline{{{20}}}|0.1}+0.01a_{\overline{{{20}}}|0.1}=0.29729+17.02713r+0.08514 \\ r=\frac{1.6-0.29729-0.08514}{17.02713}=0.0715=7.15\%. \end{align*} [[/math]]

Copyright 2023 . The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

00