Revision as of 19:16, 19 November 2023 by Admin (Created page with "'''Solution: D''' Let C be the amount of the semiannual coupon for bond B. <math display = "block"> \begin{array}{l}{{{ X}=40a_{\overline{100}|0.03}+1000(1.03)^{-10}=1085.30}}\\ {{{ X}=1085.30=C a_{\bar{1}00.035}+1000(1.035)^{-10}=8.3166C+708.9188}}\\ {{{ C}=(1085.30-708.9188)/8.3166=45.2566}}\\ {{{ Y}=\frac{45.25660 \times 2}{1000}=.0905=9.059 \%}}\end{array} </math> {{soacopyright | 2023 }}")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Exercise


ABy Admin
Nov 19'23

Answer

Solution: D

Let C be the amount of the semiannual coupon for bond B.

[[math]] \begin{array}{l}{{{ X}=40a_{\overline{100}|0.03}+1000(1.03)^{-10}=1085.30}}\\ {{{ X}=1085.30=C a_{\bar{1}00.035}+1000(1.035)^{-10}=8.3166C+708.9188}}\\ {{{ C}=(1085.30-708.9188)/8.3166=45.2566}}\\ {{{ Y}=\frac{45.25660 \times 2}{1000}=.0905=9.059 \%}}\end{array} [[/math]]

Copyright 2023 . The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

00