Revision as of 22:00, 19 November 2023 by Admin (Created page with "'''Solution: C''' The yield rate on Kate's bond is <math display = "block"> \begin{aligned} & (1000-100)=25 a_{\overline{10}| \frac{i^{(2)}}{2}}+1000 v^{10} \\ & \frac{i^{(2)}}{2}=0.0371551 \end{aligned} </math> The discount on Wallace's bond is <math display = "block"> \begin{aligned} & (1000-D)=25 a_{\overline{8} \mid 0.05}+1000 v^8 \\ & 1000-D=838.42, \quad D=161.58 \end{aligned} </math> The book value of Kate's bond at time 1 is <math display = "block"> \begin{ali...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Exercise


ABy Admin
Nov 19'23

Answer

Solution: C

The yield rate on Kate's bond is

[[math]] \begin{aligned} & (1000-100)=25 a_{\overline{10}| \frac{i^{(2)}}{2}}+1000 v^{10} \\ & \frac{i^{(2)}}{2}=0.0371551 \end{aligned} [[/math]]

The discount on Wallace's bond is

[[math]] \begin{aligned} & (1000-D)=25 a_{\overline{8} \mid 0.05}+1000 v^8 \\ & 1000-D=838.42, \quad D=161.58 \end{aligned} [[/math]]

The book value of Kate's bond at time 1 is

[[math]] \begin{aligned} & B=25 a_{\overline{8}|0.0371551}+1000 v^8 \\ & B=917.19 \end{aligned} [[/math]]

The difference is [math]B-D=917.19-161.58=755.61[/math]

Copyright 2023 . The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

00