Revision as of 12:26, 20 November 2023 by Admin (Created page with "'''Solution: A''' The present value of the income is <math display = "block"> 100a_{\overline{\infty}|0.1025} = 100/0.1025 = 975.61. </math> The present value of the investment is <math display = "block"> \begin{array}{l}{{X\biggl[1+1.05/1.1025+(1.05/1.1025)^{2}+(1.05/1.1025)^{3}+(1.05/1.1025)^{4}+(1.05/1.1025)^{5}\biggr]}}\\ {{=X[1+1.05^{-1}+1.05^{-2}+1.05^{-3}+1.05^{-5}]=X\frac{1-1.05^{-6}}{1-1.05^{-1}}=5.3295X.}}\end{array} </math> Then 975.61=5.3295X for X = 183...")
Exercise
Nov 20'23
Answer
Solution: A
The present value of the income is
[[math]]
100a_{\overline{\infty}|0.1025} = 100/0.1025 = 975.61.
[[/math]]
The present value of the investment is
[[math]]
\begin{array}{l}{{X\biggl[1+1.05/1.1025+(1.05/1.1025)^{2}+(1.05/1.1025)^{3}+(1.05/1.1025)^{4}+(1.05/1.1025)^{5}\biggr]}}\\ {{=X[1+1.05^{-1}+1.05^{-2}+1.05^{-3}+1.05^{-5}]=X\frac{1-1.05^{-6}}{1-1.05^{-1}}=5.3295X.}}\end{array}
[[/math]]
Then 975.61=5.3295X for X = 183.06.