Revision as of 12:26, 20 November 2023 by Admin (Created page with "'''Solution: A''' The present value of the income is <math display = "block"> 100a_{\overline{\infty}|0.1025} = 100/0.1025 = 975.61. </math> The present value of the investment is <math display = "block"> \begin{array}{l}{{X\biggl[1+1.05/1.1025+(1.05/1.1025)^{2}+(1.05/1.1025)^{3}+(1.05/1.1025)^{4}+(1.05/1.1025)^{5}\biggr]}}\\ {{=X[1+1.05^{-1}+1.05^{-2}+1.05^{-3}+1.05^{-5}]=X\frac{1-1.05^{-6}}{1-1.05^{-1}}=5.3295X.}}\end{array} </math> Then 975.61=5.3295X for X = 183...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Exercise


Nov 20'23

Answer

Solution: A

The present value of the income is

[[math]] 100a_{\overline{\infty}|0.1025} = 100/0.1025 = 975.61. [[/math]]

The present value of the investment is

[[math]] \begin{array}{l}{{X\biggl[1+1.05/1.1025+(1.05/1.1025)^{2}+(1.05/1.1025)^{3}+(1.05/1.1025)^{4}+(1.05/1.1025)^{5}\biggr]}}\\ {{=X[1+1.05^{-1}+1.05^{-2}+1.05^{-3}+1.05^{-5}]=X\frac{1-1.05^{-6}}{1-1.05^{-1}}=5.3295X.}}\end{array} [[/math]]

Then 975.61=5.3295X for X = 183.06.

Copyright 2023 . The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

00