Revision as of 12:38, 20 November 2023 by Admin (Created page with "'''Solution: A''' Because the interest rate is greater than zero, the Macaulay duration of each bond is greater than its modified duration. Therefore, the bond with a Macaulay duration of c must be the bond with a modified duration of a and a = c/(1 + i) which implies 1 + i = c/a. The Macaulay duration of the other bond is b(1 + i) =bc/a. {{soacopyright | 2023 }}")
Exercise
Nov 20'23
Answer
Solution: A
Because the interest rate is greater than zero, the Macaulay duration of each bond is greater than its modified duration. Therefore, the bond with a Macaulay duration of c must be the bond with a modified duration of a and a = c/(1 + i) which implies 1 + i = c/a. The Macaulay duration of the other bond is b(1 + i) =bc/a.