Revision as of 22:17, 20 November 2023 by Admin (Created page with "'''Solution: D''' Let <math>F_1, F_2, F_3</math> be the redemption amounts of each bond for purchase. To exactly match the liabilities with cash income: <math display="block"> \begin{aligned} & 1000=F_3 \\ & F_3=1000 \\ & 1000=F_2(1.02) \\ & F_2=980.39 \\ & 1000-980.39(0.02)=F_1(1.01) \\ & F_1=970.69 \end{aligned} </math> The total purchase price is <math display="block"> \frac{970.69(1.01)}{1.14}+\frac{980.39(0.02)}{1.15}+\frac{980.39(1.02)}{1.15^2}+\frac{1000}{1....")
Exercise
Nov 20'23
Answer
Solution: D
Let [math]F_1, F_2, F_3[/math] be the redemption amounts of each bond for purchase. To exactly match the liabilities with cash income:
[[math]]
\begin{aligned}
& 1000=F_3 \\
& F_3=1000 \\
& 1000=F_2(1.02) \\
& F_2=980.39 \\
& 1000-980.39(0.02)=F_1(1.01) \\
& F_1=970.69
\end{aligned}
[[/math]]
The total purchase price is
[[math]]
\frac{970.69(1.01)}{1.14}+\frac{980.39(0.02)}{1.15}+\frac{980.39(1.02)}{1.15^2}+\frac{1000}{1.18^3}=2241.82
[[/math]]