Revision as of 23:57, 21 November 2023 by Admin (Created page with "'''Solution: A''' John's deposit: pv <math>=25,000 \mathrm{v}^5</math> Sally's deposit: <math>\mathrm{pv}=4,000 \mathrm{v}^{\mathrm{t}}</math> <math display="block"> \mathrm{pv}=17,000 \mathrm{v}^{2 \mathrm{t}} </math> setting them equal to 7.000 : <math display="block"> \begin{gathered} 7,000=25,000 \mathrm{v}^5=4,000 \mathrm{v}^{\mathrm{t}}+17,000 \mathrm{v}^{2 \mathrm{t}} \\ \mathrm{v}^5=.28 \end{gathered} </math> Since we want to find the pv at time equals <m...")
Exercise
ABy Admin
Nov 21'23
Answer
Solution: A
John's deposit: pv [math]=25,000 \mathrm{v}^5[/math] Sally's deposit: [math]\mathrm{pv}=4,000 \mathrm{v}^{\mathrm{t}}[/math]
[[math]]
\mathrm{pv}=17,000 \mathrm{v}^{2 \mathrm{t}}
[[/math]]
setting them equal to 7.000 :
[[math]]
\begin{gathered}
7,000=25,000 \mathrm{v}^5=4,000 \mathrm{v}^{\mathrm{t}}+17,000 \mathrm{v}^{2 \mathrm{t}} \\
\mathrm{v}^5=.28
\end{gathered}
[[/math]]
Since we want to find the pv at time equals [math]t+4[/math] of a payment of [math]14,000: p v=14,000 v^{2 t}[/math]
We must then solve the quadratic with [math]x=v^t: 17,000 x^2+4,000 x-7,000=0[/math]
[[math]]
\mathrm{X}=.53474=\mathrm{v}^{\mathrm{t}}
[[/math]]
Thus,
[[math]]
\begin{aligned}
\mathrm{pv} & =14,000 \mathrm{v}^{\mathrm{t}+4} \\
& =14,000 \mathrm{v}^{\mathrm{t}} \mathrm{v}^4 \\
& =14,000 \mathrm{v}^{\mathrm{t}} \mathrm{v}^{5(4 / 5)} \\
& =14,000^* .53474 * .28^{4 / 5} \\
\mathrm{pv} & =2,703.94
\end{aligned}
[[/math]]
Hardiek, Aaron (June 2010). "Study Questions for Actuarial Exam 2/FM". digitalcommons.calpoly.edu. Retrieved November 20, 2023.