Revision as of 00:37, 22 November 2023 by Admin (Created page with "'''Solution: C''' <math>\begin{aligned} & \mathrm{OB}_{\mathrm{o}}=200,000 \\ & \mathrm{i}=.04 \\ & \mathrm{OB}_1=\mathrm{OB}_0(1+\mathrm{i})-2 \mathrm{OB}_{\mathrm{o}} \mathrm{i}=\mathrm{OB}_{\mathrm{o}}(1-\mathrm{i}) \\ & \mathrm{OB}_2=\mathrm{OB}_1(1+\mathrm{i})-2 \mathrm{OB}_1 \mathrm{i}=\mathrm{OB}_1(1-\mathrm{i})=\mathrm{OB}_{\mathrm{o}}(1-\mathrm{i})^2 \\ & \mathrm{OB}_3=\mathrm{OB}_2(1+\mathrm{i})-2 \mathrm{OB}_2 \mathrm{i}=\mathrm{OB}_2(1-\mathrm{i})=\mathrm{OB...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Exercise


ABy Admin
Nov 22'23

Answer

Solution: C

[math]\begin{aligned} & \mathrm{OB}_{\mathrm{o}}=200,000 \\ & \mathrm{i}=.04 \\ & \mathrm{OB}_1=\mathrm{OB}_0(1+\mathrm{i})-2 \mathrm{OB}_{\mathrm{o}} \mathrm{i}=\mathrm{OB}_{\mathrm{o}}(1-\mathrm{i}) \\ & \mathrm{OB}_2=\mathrm{OB}_1(1+\mathrm{i})-2 \mathrm{OB}_1 \mathrm{i}=\mathrm{OB}_1(1-\mathrm{i})=\mathrm{OB}_{\mathrm{o}}(1-\mathrm{i})^2 \\ & \mathrm{OB}_3=\mathrm{OB}_2(1+\mathrm{i})-2 \mathrm{OB}_2 \mathrm{i}=\mathrm{OB}_2(1-\mathrm{i})=\mathrm{OB}_{\mathrm{o}}(1-\mathrm{i})^3 \\ & \mathrm{OB}_{\mathrm{t}} =\mathrm{OB}_0(1-\mathrm{i})=\mathrm{OB}_{\mathrm{o}}(1-\mathrm{i})^{\mathrm{t}} \end{aligned}[/math]

After the [math]24^{\text {th }}[/math] payment

[[math]] \begin{aligned} & \mathrm{OB}_{24}=200,000(.96)^{24} \\ & =75,082.65 \end{aligned} [[/math]]

Thus, she will owe

[[math]] \begin{aligned} & \mathrm{OB}_{25}=\mathrm{OB}_{24}(1+\mathrm{i})=75,082.65(1.04) \\ & =78,085.96 \end{aligned} [[/math]]

Hardiek, Aaron (June 2010). "Study Questions for Actuarial Exam 2/FM". digitalcommons.calpoly.edu. Retrieved November 20, 2023.

00