Revision as of 09:29, 22 November 2023 by Admin (Created page with "'''Solution: A''' <math display="block"> \begin{aligned} & \mathrm{OB}_0=24,000 \\ & \mathrm{i}=.16 \end{aligned} </math> j on sinking fund: .11 first 12 years then .08 for last 18 years Original payments would be: <math display="block"> \begin{aligned} & \mathrm{Ks}_{\overline{30}|0.11}=24,000 \\ & \mathrm{~K}=120.59 \end{aligned} </math> At the end of 12 years: <math display="block"> 120.50 \mathrm{~s}_{\overline{12}|0.11}=2,738.98 </math> With the new rat...")
Exercise
ABy Admin
Nov 22'23
Answer
Solution: A
[[math]]
\begin{aligned}
& \mathrm{OB}_0=24,000 \\
& \mathrm{i}=.16
\end{aligned}
[[/math]]
j on sinking fund: .11 first 12 years then .08 for last 18 years
Original payments would be:
[[math]]
\begin{aligned}
& \mathrm{Ks}_{\overline{30}|0.11}=24,000 \\
& \mathrm{~K}=120.59
\end{aligned}
[[/math]]
At the end of 12 years:
[[math]]
120.50 \mathrm{~s}_{\overline{12}|0.11}=2,738.98
[[/math]]
With the new rate of interest, payment increases to: [math]120.59+\mathrm{x}[/math]
The accumulated value is;
[[math]]
\begin{aligned}
& 2,738.98(1.08)^{18}+(120.59+\mathrm{x}) \mathrm{s}_{\overline{18}|0.08}=24,000 \\
& (120.59+\mathrm{x}) \mathrm{s}_{\overline{18} | 0.08}=13,054.98 \\
& \mathrm{x}=228.01
\end{aligned}
[[/math]]
Hardiek, Aaron (June 2010). "Study Questions for Actuarial Exam 2/FM". digitalcommons.calpoly.edu. Retrieved November 20, 2023.