Revision as of 09:52, 22 November 2023 by Admin (Created page with "Amin buys a 24 year bond with a par value of $2,300 and annual coupons. The bond is redeemable at par. He pays $3,200 for the bond assuming an annual effective yield of i. the coupon rate is 4 times the yield rate. At the end of 9 years Amin sells the bond for S, which produces the same annual effective rate of I for the new buyer. Calculate S. <ul class="mw-excansopts"><li>Insufficient information</li><li>$3,051.19</li><li>$3,721.43</li><li>$1,875.37</li><li>$2,156.9...")
ABy Admin
Nov 22'23
Exercise
Amin buys a 24 year bond with a par value of $2,300 and annual coupons. The bond is redeemable at par. He pays $3,200 for the bond assuming an annual effective yield of i. the coupon rate is 4 times the yield rate. At the end of 9 years Amin sells the bond for S, which produces the same annual effective rate of I for the new buyer.
Calculate S.
- Insufficient information
- $3,051.19
- $3,721.43
- $1,875.37
- $2,156.91
Hardiek, Aaron (June 2010). "Study Questions for Actuarial Exam 2/FM". digitalcommons.calpoly.edu. Retrieved November 20, 2023.
ABy Admin
Nov 22'23
Solution: B
[[math]]
\mathrm{P}=3200 \quad \mathrm{~F}=\mathrm{C}=2300
[[/math]]
To calculate i:
[[math]]
\begin{aligned}
& 3200=2300 \mathrm{v}^{24}+2300(4 \mathrm{i}) \mathrm{a}_{\overline{24} |\mathrm{i}} \\
& 3200=2300 \mathrm{v}^{24}+9200\left(1-\mathrm{v}^{24}\right) \\
& -6000=\mathrm{v}^{24}-9200 \mathrm{v}^{24} \\
& \mathrm{i}=.0058 \\
& \mathrm{~s}=2300 \mathrm{v}^{15}+2300(4(.0058)) \mathrm{a}_{\overline{15}|.0058} \\
& =3,051.19
\end{aligned}
[[/math]]
Hardiek, Aaron (June 2010). "Study Questions for Actuarial Exam 2/FM". digitalcommons.calpoly.edu. Retrieved November 20, 2023.