Revision as of 09:55, 22 November 2023 by Admin (Created page with "'''Solution: B''' <math display="block"> \mathrm{P}=3200 \quad \mathrm{~F}=\mathrm{C}=2300 </math> To calculate i: <math display="block"> \begin{aligned} & 3200=2300 \mathrm{v}^{24}+2300(4 \mathrm{i}) \mathrm{a}_{\overline{24} |\mathrm{i}} \\ & 3200=2300 \mathrm{v}^{24}+9200\left(1-\mathrm{v}^{24}\right) \\ & -6000=\mathrm{v}^{24}-9200 \mathrm{v}^{24} \\ & \mathrm{i}=.0058 \\ & \mathrm{~s}=2300 \mathrm{v}^{15}+2300(4(.0058)) \mathrm{a}_{\overline{15}|.0058} \\ & =3...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Exercise


ABy Admin
Nov 22'23

Answer

Solution: B

[[math]] \mathrm{P}=3200 \quad \mathrm{~F}=\mathrm{C}=2300 [[/math]]


To calculate i:

[[math]] \begin{aligned} & 3200=2300 \mathrm{v}^{24}+2300(4 \mathrm{i}) \mathrm{a}_{\overline{24} |\mathrm{i}} \\ & 3200=2300 \mathrm{v}^{24}+9200\left(1-\mathrm{v}^{24}\right) \\ & -6000=\mathrm{v}^{24}-9200 \mathrm{v}^{24} \\ & \mathrm{i}=.0058 \\ & \mathrm{~s}=2300 \mathrm{v}^{15}+2300(4(.0058)) \mathrm{a}_{\overline{15}|.0058} \\ & =3,051.19 \end{aligned} [[/math]]

Hardiek, Aaron (June 2010). "Study Questions for Actuarial Exam 2/FM". digitalcommons.calpoly.edu. Retrieved November 20, 2023.

00