Revision as of 09:55, 22 November 2023 by Admin (Created page with "'''Solution: B''' <math display="block"> \mathrm{P}=3200 \quad \mathrm{~F}=\mathrm{C}=2300 </math> To calculate i: <math display="block"> \begin{aligned} & 3200=2300 \mathrm{v}^{24}+2300(4 \mathrm{i}) \mathrm{a}_{\overline{24} |\mathrm{i}} \\ & 3200=2300 \mathrm{v}^{24}+9200\left(1-\mathrm{v}^{24}\right) \\ & -6000=\mathrm{v}^{24}-9200 \mathrm{v}^{24} \\ & \mathrm{i}=.0058 \\ & \mathrm{~s}=2300 \mathrm{v}^{15}+2300(4(.0058)) \mathrm{a}_{\overline{15}|.0058} \\ & =3...")
Exercise
ABy Admin
Nov 22'23
Answer
Solution: B
[[math]]
\mathrm{P}=3200 \quad \mathrm{~F}=\mathrm{C}=2300
[[/math]]
To calculate i:
[[math]]
\begin{aligned}
& 3200=2300 \mathrm{v}^{24}+2300(4 \mathrm{i}) \mathrm{a}_{\overline{24} |\mathrm{i}} \\
& 3200=2300 \mathrm{v}^{24}+9200\left(1-\mathrm{v}^{24}\right) \\
& -6000=\mathrm{v}^{24}-9200 \mathrm{v}^{24} \\
& \mathrm{i}=.0058 \\
& \mathrm{~s}=2300 \mathrm{v}^{15}+2300(4(.0058)) \mathrm{a}_{\overline{15}|.0058} \\
& =3,051.19
\end{aligned}
[[/math]]
Hardiek, Aaron (June 2010). "Study Questions for Actuarial Exam 2/FM". digitalcommons.calpoly.edu. Retrieved November 20, 2023.