Revision as of 23:54, 25 November 2023 by Admin (Created page with "'''Solution: A''' <math>1000=(1 / 2) 1000(1.04)^7(1.04)^n</math> so <math>2=(1.04)^{7+n}</math> so <math>(7+n) \ln (1.04)=\ln 2</math> so <math>n=-7+\ln 2 / \ln (1.04)=</math> 10.673 years. '''References''' {{cite web |url=https://web2.uwindsor.ca/math/hlynka/392oldtests.html |last=Hlynka |first=Myron |website=web2.uwindsor.ca | title = University of Windsor Old Tests 62-392 Theory of Interest | access-date=November 23, 2023}}")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Exercise


ABy Admin
Nov 25'23

Answer

Solution: A

[math]1000=(1 / 2) 1000(1.04)^7(1.04)^n[/math] so [math]2=(1.04)^{7+n}[/math] so [math](7+n) \ln (1.04)=\ln 2[/math] so [math]n=-7+\ln 2 / \ln (1.04)=[/math] 10.673 years.

References

Hlynka, Myron. "University of Windsor Old Tests 62-392 Theory of Interest". web2.uwindsor.ca. Retrieved November 23, 2023.

00