Revision as of 00:01, 26 November 2023 by Admin
ABy Admin
Nov 25'23
Exercise
For a certain fund the force of interest δt is a linear function of t such that δ0 = 0 and δ1 = ln(1.05). Three deposits of $1000 were are made on Jan 1, 2001 (time 0), Jan 1, 2003 and Jan 1, 2005.
What is the total accumulated value on Jan.1, 2006?
- 3875
- 4050
- 4525
- 4575
- 4755
References
Hlynka, Myron. "University of Windsor Old Tests 62-392 Theory of Interest". web2.uwindsor.ca. Retrieved November 23, 2023.
ABy Admin
Nov 25'23
Solution: E
[[math]]
\begin{aligned}
\text { Accum.Value } & =1000 e^{\int_0^5 \delta_t d t}+1000 e^{\int_2^5 \delta_t d t}+1000 e^{\int_4^5 \delta_t d t} \\
& =1000 e^{(\ln (1.05))(25 / 2-0)}+1000 e^{(\ln (1.05))(25 / 2-4 / 2)}+1000 e^{(\ln (1.05))(25 / 2-16 / 2)} \\
& =1000\left(1.05^{12.5}+1.05^{10.5}+1.05^{4.5}\right)=1000(1.840205+1.669120+1.245523)=4754.85
\end{aligned}
[[/math]]
References
Hlynka, Myron. "University of Windsor Old Tests 62-392 Theory of Interest". web2.uwindsor.ca. Retrieved November 23, 2023.