Revision as of 13:46, 26 November 2023 by Admin (Created page with "How many years will it take to double your money if you invest an amount A now at a nominal rate of 4% compounded semiannually? <ul class="mw-excansopts"> <li>17</li> <li>17.5</li> <li>17.7</li> <li>18</li> <li>18.5</li> </ul> '''References''' {{cite web |url=https://web2.uwindsor.ca/math/hlynka/392oldtests.html |last=Hlynka |first=Myron |website=web2.uwindsor.ca | title = University of Windsor Old Tests 62-392 Theory of Interest | access-date=November 23, 2023}}")
ABy Admin
Nov 26'23
Exercise
How many years will it take to double your money if you invest an amount A now at a nominal rate of 4% compounded semiannually?
- 17
- 17.5
- 17.7
- 18
- 18.5
References
Hlynka, Myron. "University of Windsor Old Tests 62-392 Theory of Interest". web2.uwindsor.ca. Retrieved November 23, 2023.
ABy Admin
Nov 26'23
Solution: B
[[math]]
2=\left(1+\frac{i^{(2)}}{2}\right)^n=(1.02)^{2 n} \implies 2 n=\ln (2) / \ln (1.02)=35.0028 \implies n=17.50
[[/math]]
References
Hlynka, Myron. "University of Windsor Old Tests 62-392 Theory of Interest". web2.uwindsor.ca. Retrieved November 23, 2023.