Revision as of 17:22, 26 November 2023 by Admin (Created page with "Simplify the expression <math display = "block">\left(\frac{d}{d v} \delta\right)\left(\frac{d}{d i} d\right)</math> <ul class="mw-excansopts"><li><math>-v</math></li><li><math>-v^3</math></li><li>1</li><li><math>v</math></li><li><math>v^3</math></li></ul> '''References''' {{cite web |url=https://web2.uwindsor.ca/math/hlynka/392oldtests.html |last=Hlynka |first=Myron |website=web2.uwindsor.ca | title = University of Windsor Old Tests 62-392 Theory of Interest | access...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
ABy Admin
Nov 26'23

Exercise

Simplify the expression

[[math]]\left(\frac{d}{d v} \delta\right)\left(\frac{d}{d i} d\right)[[/math]]

  • [math]-v[/math]
  • [math]-v^3[/math]
  • 1
  • [math]v[/math]
  • [math]v^3[/math]

References

Hlynka, Myron. "University of Windsor Old Tests 62-392 Theory of Interest". web2.uwindsor.ca. Retrieved November 23, 2023.

ABy Admin
Nov 26'23

Solution A

[[math]] \begin{aligned} & \frac{d}{d v} \delta=\frac{d}{d v} \ln (1+i)=\frac{d}{d v} \ln \left(v^{-1}\right)=\frac{d}{d v}(-\ln (v))=\frac{-1}{v} . \\ & \frac{d}{d i} d=\frac{d}{d i} \frac{i}{1+i}=\frac{1}{(1+i)^2} \end{aligned} [[/math]]

Hence

[[math]]\left(\frac{d}{d v} \delta\right)\left(\frac{d}{d i} d\right)=\frac{-1}{v} \frac{1}{(1+i)^2}=\frac{-1}{1+i}=-v.[[/math]]

References

Hlynka, Myron. "University of Windsor Old Tests 62-392 Theory of Interest". web2.uwindsor.ca. Retrieved November 23, 2023.

00