Revision as of 18:19, 26 November 2023 by Admin (Created page with "'''Solution: C''' <math display="block"> \begin{aligned} & 1.05=1+i=v^{-1}=e^\delta \text { so } \delta=\ln (1.05) \text { and } e^{\delta t}=1.05^t \\ & P V=\int_0^n f(t) v^t d t=\int_0^{10}(1000+100 t) e^{-\delta t} d t \end{aligned} </math> Thus after 10 years, the accumulated value is <math display="block"> (1.05)^{10} P V=1.05^{10} \int_0^{10}(1000+100 t) e^{-\delta t} d t=1.05^{10} \int_0^{10}(1000+100 t)\left(1.05^{-t}\right) d t </math> '''References'''...")
Exercise
ABy Admin
Nov 26'23
Answer
Solution: C
[[math]]
\begin{aligned}
& 1.05=1+i=v^{-1}=e^\delta \text { so } \delta=\ln (1.05) \text { and } e^{\delta t}=1.05^t \\
& P V=\int_0^n f(t) v^t d t=\int_0^{10}(1000+100 t) e^{-\delta t} d t
\end{aligned}
[[/math]]
Thus after 10 years, the accumulated value is
[[math]]
(1.05)^{10} P V=1.05^{10} \int_0^{10}(1000+100 t) e^{-\delta t} d t=1.05^{10} \int_0^{10}(1000+100 t)\left(1.05^{-t}\right) d t
[[/math]]
References
Hlynka, Myron. "University of Windsor Old Tests 62-392 Theory of Interest". web2.uwindsor.ca. Retrieved November 23, 2023.