Revision as of 21:24, 26 November 2023 by Admin (Created page with "If <math>s_{\overline{n}|} = 60</math>, <math>s_{\overline{2n}|} = 240</math>, find <math>s_{\overline{3n}|}.</math> <ul class="mw-excansopts"> <li>700</li> <li> 730</li> <li>760</li> <li> 770</li> <li>780 </li> </ul> '''References''' {{cite web |url=https://web2.uwindsor.ca/math/hlynka/392oldtests.html |last=Hlynka |first=Myron |website=web2.uwindsor.ca | title = University of Windsor Old Tests 62-392 Theory of Interest | access-date=November 23, 2023}}")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
ABy Admin
Nov 26'23

Exercise

If [math]s_{\overline{n}|} = 60[/math], [math]s_{\overline{2n}|} = 240[/math], find [math]s_{\overline{3n}|}.[/math]

  • 700
  • 730
  • 760
  • 770
  • 780

References

Hlynka, Myron. "University of Windsor Old Tests 62-392 Theory of Interest". web2.uwindsor.ca. Retrieved November 23, 2023.

ABy Admin
Nov 26'23

Solution: E

[[math]] s_{\overline{2 n} \mid}=s_{\overline{n} \mid}+(1+i)^n s_{\overline{n} \mid} \implies 240=60+60(1+i)^n \text {. } [[/math]]

Thus [math](1+i)^n=3[/math]. Hence

[[math]] s_{\overline{3n} \mid}=s_{\overline{n} \mid}+(1+i)^n s_{\overline{2n} \mid}=60+3(240)=780 . [[/math]]

References

Hlynka, Myron. "University of Windsor Old Tests 62-392 Theory of Interest". web2.uwindsor.ca. Retrieved November 23, 2023.

00