Revision as of 21:45, 26 November 2023 by Admin (Created page with "A perpetuity costs 77.1 and makes annual payments at the end of the year. The perpetuity pays 1 at the end of year 2, 2 at the end of year 3, . . . , n at the end of year (n + 1). After year (n + 1), the payments remain constant at n. The annual effective interest rate is 10.5%. Calculate n. <ul class="mw-excansopts"><li>17</li><li>18</li><li>19 </li><li>20</li><li>21</li></ul> '''References''' {{cite web |url=https://web2.uwindsor.ca/math/hlynka/392oldtests.html |l...")
ABy Admin
Nov 26'23
Exercise
A perpetuity costs 77.1 and makes annual payments at the end of the year. The perpetuity pays 1 at the end of year 2, 2 at the end of year 3, . . . , n at the end of year (n + 1). After year (n + 1), the payments remain constant at n. The annual effective interest rate is 10.5%.
Calculate n.
- 17
- 18
- 19
- 20
- 21
References
Hlynka, Myron. "University of Windsor Old Tests 62-392 Theory of Interest". web2.uwindsor.ca. Retrieved November 23, 2023.
ABy Admin
Nov 26'23
Solution: C
[[math]]
\begin{aligned}
77.1 & =1 v^2+2 v^3+3 v^4+\cdots+n v^{n+1}+n\left(v^{n+2}+\ldots\right)=v(I a)_{\overline{n} \mid}+n v^{n+1} a_{\overline{\infty} \mid} \\
& =v \frac{\ddot{a}_{\overline{n} \mid}-n v^n}{i}+n v^{n+1} \frac{1}{i} \\
& =\frac{a_{\overline{n} \mid}-n v^{n+1}}{i}+\frac{n v^{n+1}}{i}=\frac{a_{\overline{n} \mid i}}{i} \\
& =\frac{1-v^n}{i^2}
\end{aligned}
[[/math]]
Thus [math]v^n=1-77.1\left(i^2\right)[/math] so
[[math]]n=\frac{\ln \left(1-77.1 i^2\right)}{\ln (v)}=\frac{-1.8973}{-.099845}=19[[/math]]
References
Hlynka, Myron. "University of Windsor Old Tests 62-392 Theory of Interest". web2.uwindsor.ca. Retrieved November 23, 2023.