Revision as of 22:49, 26 November 2023 by Admin
ABy Admin
Nov 26'23
Exercise
Mary purchases an increasing annuity-immediate for 50,000 that makes twenty annual payments as follows:
- P, 2P, . . . , 10P in years 1 through 10, and
- 10P (1.05), 10P (1.05)2, . . . , 10P (1.05)10 in years 11 through 20.
The annual effective interest rate is 7% for the first 10 years and 5% thereafter.
Calculate P
- 564,
- 574
- 584
- 594
- 604
References
Hlynka, Myron. "University of Windsor Old Tests 62-392 Theory of Interest". web2.uwindsor.ca. Retrieved November 23, 2023.
ABy Admin
Nov 26'23
Solution: C
Let [math]v=1 /(1+.07)[/math] and let [math]w=1 /(1+.05)[/math].
[[math]]
\begin{aligned}
50000 & =\left(P v+2 P v^2+\cdots+10 P v^{10}\right)+v^{10}\left(10 P(1.05) w+\cdots+10 P(1.05)^{10} w^{10}\right) \\
& =P v\left(1+2 v+\cdots+10 v^9\right)+v^{10} P(10+10+\cdots+10)
\end{aligned}
[[/math]]
[[math]]
\begin{aligned}
S & =1+2 v+3 v^2+\cdots+10 v^9 \\
v S & =1 v+2 v^2+\cdots+9 v^9+10 v^{10} \\
(1-v) S & =1+v+\cdots+v^9-10 v^{10}
\end{aligned}
[[/math]]
So
[[math]]S=\frac{1-v^{10}}{(1-v)^2}-\frac{10 v^{10}}{1-v}=\frac{1-v^{10}-10 v^{10}+10 v^{11}}{(1-v)^2}=\frac{1-5.59184+4.75093}{.00427985}=37.170874[[/math]]
so
[[math]]50000=P(1.07)^{-1}(37.170874)+(1.07)^{-10} P(100)[[/math]]
so [math]P=\frac{50000}{34.739135+50.8349292}=584.29 . [/math]
References
Hlynka, Myron. "University of Windsor Old Tests 62-392 Theory of Interest". web2.uwindsor.ca. Retrieved November 23, 2023.