Revision as of 00:10, 27 November 2023 by Admin (Created page with "'''Solution: B''' Let <math>K</math> be annual payment. Here <math>v=(1+i)^{-1}=8 / 9</math>. Then <math>153.60=I_n=K(1-v)=K / 9</math> so <math>K=153.86(9)</math>. Next <math>P R_n=K-I_n=9(153.86)-153.86=8(153.86)</math>. Then <math>X=\sum_{i=1}^n P R_i=P R_n+6009.12=</math> <math>8(153.86)+6009.12</math> Thus <math>Y=K-X i=9(153.86)-[8(153.86)+6009.12(9)](1 / 8)=479.6235</math>. '''References''' {{cite web |url=https://web2.uwindsor.ca/math/hlynka/392oldtests.html...")
Exercise
ABy Admin
Nov 27'23
Answer
Solution: B
Let [math]K[/math] be annual payment. Here [math]v=(1+i)^{-1}=8 / 9[/math]. Then [math]153.60=I_n=K(1-v)=K / 9[/math] so [math]K=153.86(9)[/math]. Next [math]P R_n=K-I_n=9(153.86)-153.86=8(153.86)[/math]. Then [math]X=\sum_{i=1}^n P R_i=P R_n+6009.12=[/math] [math]8(153.86)+6009.12[/math]
Thus [math]Y=K-X i=9(153.86)-[8(153.86)+6009.12(9)](1 / 8)=479.6235[/math].
References
Hlynka, Myron. "University of Windsor Old Tests 62-392 Theory of Interest". web2.uwindsor.ca. Retrieved November 23, 2023.