Revision as of 00:08, 5 December 2023 by Admin (Created page with "'''Solution: C''' Assuming the rent payments are paid at the beginning of the year, the PV of the floating rent for the next 5 years is <math display="block"> \$ 100,000+\frac{\$ 100,000 * 1.05^1}{1.12^1}+\cdots+\frac{\$ 100,000 * 1.05^4}{1.12^4}=\$ 441,285.71 </math> This must be equal to <math display="block"> \$ 441,285.71=F+\frac{F}{1.12}+\frac{F}{1.12^2}+\frac{F}{1.12^3}+\frac{F}{1.12^4} </math> Solve for <math>F</math>, to get <math>F=\$ 109,300.67</math>...")
Exercise
Dec 05'23
Answer
Solution: C
Assuming the rent payments are paid at the beginning of the year, the PV of the floating rent for the next 5 years is
[[math]]
\$ 100,000+\frac{\$ 100,000 * 1.05^1}{1.12^1}+\cdots+\frac{\$ 100,000 * 1.05^4}{1.12^4}=\$ 441,285.71
[[/math]]
This must be equal to
[[math]]
\$ 441,285.71=F+\frac{F}{1.12}+\frac{F}{1.12^2}+\frac{F}{1.12^3}+\frac{F}{1.12^4}
[[/math]]
Solve for [math]F[/math], to get [math]F=\$ 109,300.67[/math]
References
Lo, Andrew W.; Wang, Jiang. "MIT Sloan Finance Problems and Solutions Collection Finance Theory I" (PDF). alo.mit.edu. Retrieved November 30, 2023.