Revision as of 00:08, 5 December 2023 by Admin (Created page with "'''Solution: C''' Assuming the rent payments are paid at the beginning of the year, the PV of the floating rent for the next 5 years is <math display="block"> \$ 100,000+\frac{\$ 100,000 * 1.05^1}{1.12^1}+\cdots+\frac{\$ 100,000 * 1.05^4}{1.12^4}=\$ 441,285.71 </math> This must be equal to <math display="block"> \$ 441,285.71=F+\frac{F}{1.12}+\frac{F}{1.12^2}+\frac{F}{1.12^3}+\frac{F}{1.12^4} </math> Solve for <math>F</math>, to get <math>F=\$ 109,300.67</math>...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Exercise


Dec 05'23

Answer

Solution: C

Assuming the rent payments are paid at the beginning of the year, the PV of the floating rent for the next 5 years is

[[math]] \$ 100,000+\frac{\$ 100,000 * 1.05^1}{1.12^1}+\cdots+\frac{\$ 100,000 * 1.05^4}{1.12^4}=\$ 441,285.71 [[/math]]

This must be equal to

[[math]] \$ 441,285.71=F+\frac{F}{1.12}+\frac{F}{1.12^2}+\frac{F}{1.12^3}+\frac{F}{1.12^4} [[/math]]


Solve for [math]F[/math], to get [math]F=\$ 109,300.67[/math]

References

Lo, Andrew W.; Wang, Jiang. "MIT Sloan Finance Problems and Solutions Collection Finance Theory I" (PDF). alo.mit.edu. Retrieved November 30, 2023.

00