Revision as of 00:37, 5 December 2023 by Admin (Created page with "'''Solution: D''' <math display="block"> \begin{gathered} P V=\frac{20}{(1+5 \%)^{10}}+\frac{30}{(1+5 \%)^{30}}=12.28+6.94=19.22 \text { million } \\ D=\frac{12.28 * 10+6.94 * 30}{19.22}=17.22 \\ M D=\frac{D}{1+y}=16.40 \end{gathered} </math> <math>\mathrm{y}=5 \%</math> because the yield curve is flat When rates drop by <math>0.25 \%</math>, the PV of liabilities will go up by <math>0.25 \% * M D * P V=</math> 0.7881 million First, you calculate the desired MD of y...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Exercise


Dec 05'23

Answer

Solution: D

[[math]] \begin{gathered} P V=\frac{20}{(1+5 \%)^{10}}+\frac{30}{(1+5 \%)^{30}}=12.28+6.94=19.22 \text { million } \\ D=\frac{12.28 * 10+6.94 * 30}{19.22}=17.22 \\ M D=\frac{D}{1+y}=16.40 \end{gathered} [[/math]]

[math]\mathrm{y}=5 \%[/math] because the yield curve is flat When rates drop by [math]0.25 \%[/math], the PV of liabilities will go up by [math]0.25 \% * M D * P V=[/math] 0.7881 million

First, you calculate the desired MD of your assets. We want:

[[math]] M D_{\text {asset }} * P V_{\text {asset }}=M D_{\text {liabilites }} * P V_{\text {liabilities }} [[/math]]


Therefore, [math]M D_{\text {asset }}=\frac{16.4 * 19.22}{18}=17.51[/math] Now we can determine the allocation of our portfolio. Suppose we invest a fraction of [math]\mathrm{x}[/math] of our portfolio into 1-year bond and the rest into treasury bond, then the MD of our portfolio will be:

[[math]] M D_{\text {portfolio }}=x * M D_{1 y r b o n d}+(1-x) * M D_{\text {tbond }}=x * \frac{1}{1+5 \%}+(1-x) * 20 [[/math]]


Equating [math]M D_{\text {portfolio }}=17.51[/math], we get [math]\mathrm{x}=13.05 \%[/math]

References

Lo, Andrew W.; Wang, Jiang. "MIT Sloan Finance Problems and Solutions Collection Finance Theory I" (PDF). alo.mit.edu. Retrieved November 30, 2023.

00