Revision as of 22:53, 15 January 2024 by Admin (Created page with "You are given: i) <math>\mu_{x+t}=\beta t^{2}, t \geq 0</math> ii) <math>l_{x}=1000</math> iii) <math>l_{x+10}=400</math> Calculate <math>1000 \beta</math>. <ul class="mw-excansopts"><li> 2.75</li><li> 2.80</li><li> 2.85</li><li> 2.90</li><li> 2.95</li></ul>")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jan 15'24

Exercise

You are given:

i) [math]\mu_{x+t}=\beta t^{2}, t \geq 0[/math]

ii) [math]l_{x}=1000[/math]

iii) [math]l_{x+10}=400[/math]

Calculate [math]1000 \beta[/math].

  • 2.75
  • 2.80
  • 2.85
  • 2.90
  • 2.95
Jan 15'24

Answer: A

[math]{ }_{10} p_{x}=\frac{l_{x+10}}{l_{x}}=e^{-\int_{0}^{10} \mu_{x+1} \cdot d t}=\gt\frac{400}{1000}=e^{-\int_{0}^{10} \beta t^{2} \cdot d t}=\gt0.4=e^{-\beta t^{3} / 3 b^{10}}[/math]

[math]==\gt0.4=e^{-\beta \cdot 100^{3} / 3}==\gt\ln (0.4)=-\beta\left(\frac{1000}{3}\right)==\gt\beta=-\ln (0.4)(.003)=0.0027489[/math]

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

00