Revision as of 18:36, 17 January 2024 by Admin (Created page with "You are given the following seriatim data on survival times for a group of 12 lives. The superscript + indicates a right-censored value. <math>25,32^{+}, 35^{+}, 36,40^{+}, 44,48,60,62^{+}, 65,67,70^{+}</math> Calculate the standard deviation of the estimate of <math>S(50)</math> using the Nelson-Aalen estimator. <ul class="mw-excansopts"><li> 0.1455</li><li> 0.1519</li><li> 0.1547</li><li> 0.1621</li><li> 0.1650</li></ul>")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jan 17'24

Exercise

You are given the following seriatim data on survival times for a group of 12 lives. The superscript + indicates a right-censored value.

[math]25,32^{+}, 35^{+}, 36,40^{+}, 44,48,60,62^{+}, 65,67,70^{+}[/math]

Calculate the standard deviation of the estimate of [math]S(50)[/math] using the Nelson-Aalen estimator.

  • 0.1455
  • 0.1519
  • 0.1547
  • 0.1621
  • 0.1650
Jan 17'24

Answer: A

[math]\hat{H}(50)=\frac{1}{12}+\frac{1}{9}+\frac{1}{7}+\frac{1}{6}=0.50397[/math]

[math]\hat{S}(50)=e^{-0.50397}=0.60413[/math]

[math]V[\hat{H}(50)]=\frac{11}{12^{3}}+\frac{8}{9^{3}}+\frac{6}{7^{3}}+\frac{5}{6^{3}}=0.05798[/math]

[math]V[\hat{S}(50)]=\hat{S}(50)^{2} \times V[\hat{H}(50)]=0.02116=0.1455^{2}[/math]

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

00