Revision as of 03:27, 18 January 2024 by Admin (Created page with "You are given: (i) <math>\quad q_{60}=0.01</math> (ii) Using <math>i=0.05, A_{60: 31}=0.86545</math> Using <math>i=0.045</math> calculate <math>A_{60: 3}</math>. <ul class="mw-excansopts"><li> 0.866</li><li> 0.870</li><li> 0.874</li><li> 0.878</li><li> 0.882</li></ul> {{soacopyright|2024}}")
Jan 18'24
Exercise
Jan 18'24
Answer: D
[math]A_{60: 31}=q_{60} v+\left(1-q_{60}\right) q_{60+1} v^{2}+\left(1-q_{60}\right)\left(1-q_{60+1}\right) v^{3}=0.86545[/math]
[math]q_{60+1}=\frac{A_{60: 31}-q_{60} v-\left(1-q_{60}\right) v^{3}}{\left(1-q_{60}\right) v^{2}-\left(1-q_{60}\right) v^{3}}=\frac{0.86545-\frac{0.01}{1.05}-\frac{0.99}{1.05^{3}}}{\frac{0.99}{1.05^{2}}-\frac{0.99}{1.05^{3}}}=0.017[/math] when [math]v=1 / 1.05[/math].
The primes indicate calculations at [math]4.5 \%[/math] interest.
[[math]]
\begin{aligned}
A_{60: 3}^{\prime} & =q_{60} v^{\prime}+\left(1-q_{60}\right) q_{60+1} v^{\prime 2}+\left(1-q_{60}\right)\left(1-q_{60+1}\right) v^{\prime 3} \\
& =\frac{0.01}{1.045}+\frac{0.99(0.017)}{1.045^{2}}+\frac{0.99(0.983)}{1.045^{3}} \\
& =0.87777
\end{aligned}
[[/math]]