Revision as of 03:30, 18 January 2024 by Admin (Created page with "For a 25 -year pure endowment of 1 on <math>(x)</math>, you are given: (i) <math>\quad Z</math> is the present value random variable at issue of the benefit payment (ii) <math>\operatorname{Var}(Z)=0.10 E[Z]</math> (iii) <math>{ }_{25} p_{x}=0.57</math> Calculate the annual effective interest rate. <ul class="mw-excansopts"><li> 5.8%</li><li> 6.0%</li><li> 6.2%</li><li>6.4%</li><li>6.6%</li></ul> {{soacopyright|2024}}")
Jan 18'24
Exercise
For a 25 -year pure endowment of 1 on [math](x)[/math], you are given:
(i) [math]\quad Z[/math] is the present value random variable at issue of the benefit payment
(ii) [math]\operatorname{Var}(Z)=0.10 E[Z][/math]
(iii) [math]{ }_{25} p_{x}=0.57[/math]
Calculate the annual effective interest rate.
- 5.8%
- 6.0%
- 6.2%
- 6.4%
- 6.6%
Jan 18'24
Answer: B
[math]\operatorname{Var}(Z)=0.10 E[Z] \Rightarrow v^{50}{ }_{25} p_{x}\left(1-{ }_{25} p_{x}\right)=0.10 \cdot v^{25}{ }_{25} p_{x}[/math]
[math]\Rightarrow \frac{(1-0.57)}{(1+i)^{50}}=0.10 \times \frac{1}{(1+i)^{25}}[/math]
[math]\Rightarrow(1+i)^{25}=\frac{0.43}{0.10}=4.3 \Rightarrow i=0.06[/math]