Revision as of 03:31, 18 January 2024 by Admin (Created page with "For a whole life insurance of 1000 on (50), you are given: (i) The death benefit is payable at the end of the year of death (ii) Mortality follows the Standard Ultimate Life Table (iii) <math>i=0.04</math> in the first year, and <math>i=0.05</math> in subsequent years Calculate the actuarial present value of this insurance. <ul class="mw-excansopts"><li> 187</li><li> 189</li><li> 191</li><li> 193</li><li> 195</li></ul> {{soacopyright|2024}}")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jan 18'24

Exercise

For a whole life insurance of 1000 on (50), you are given:

(i) The death benefit is payable at the end of the year of death

(ii) Mortality follows the Standard Ultimate Life Table

(iii) [math]i=0.04[/math] in the first year, and [math]i=0.05[/math] in subsequent years

Calculate the actuarial present value of this insurance.

  • 187
  • 189
  • 191
  • 193
  • 195

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

Jan 18'24

Answer: C

Let [math]A_{51}^{\text {SULT }}[/math] designate [math]A_{51}[/math] using the Standard Ultimate Life Table at [math]5 \%[/math].

[[math]] \begin{aligned} \mathrm{APV}(\text { insurance }) & =1000\left(\frac{1}{1.04}\right)\left(q_{50}+p_{50} A_{51}^{S U L T}\right) \\ & =1000\left(\frac{1}{1.04}\right)[0.001209+(1-0.001209)(0.19780)] \\ & =191.12 \end{aligned} [[/math]]

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

00