Revision as of 03:38, 18 January 2024 by Admin (Created page with "You are given the following extract of ultimate mortality rates from a two-year select and ultimate mortality table: {| class="table table-bordered" ! <math>x</math> !! <math>q_{x}</math> |- | 50 || 0.045 |- | 51 || 0.050 |- | 52 || 0.055 |- | 53 || 0.060 |} The select mortality rates satisfy the following: - <math>q_{[x]}=0.7 q_{x}</math> - <math>q_{[x]+1}=0.8 q_{x+1}</math> You are also given that <math>i=0.04</math>. Calculate <math>A_{[50]: 3]}^{1}</math>. <ul c...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jan 18'24

Exercise

You are given the following extract of ultimate mortality rates from a two-year select and ultimate mortality table:

[math]x[/math] [math]q_{x}[/math]
50 0.045
51 0.050
52 0.055
53 0.060

The select mortality rates satisfy the following: - [math]q_{[x]}=0.7 q_{x}[/math] - [math]q_{[x]+1}=0.8 q_{x+1}[/math]

You are also given that [math]i=0.04[/math].

Calculate [math]A_{[50]: 3]}^{1}[/math].

  • 0.08
  • 0.09
  • 0.10
  • 0.11
  • 0.12

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

Jan 18'24

Answer: D

[math]A_{[50]: 3]}^{1}=v q_{[50]}+v^{2} p_{[50]} q_{[50]+1}+v^{3} p_{[50]} p_{[50]+1} q_{52}[/math]

where: [math]v=\frac{1}{1.04}[/math]

[math]q_{[50]}=0.7(0.045)=0.0315[/math]

[math]p_{[50]}=1-q_{[50]}=0.9685[/math]

[math]q_{[50]+1}=0.8(0.050)=0.040[/math]

[math]p_{[50]+1}=1-q_{[50]+1}=0.960[/math]

[math]q_{52}=0.055[/math]

So: [math]A_{[50]: 3]}^{1}=0.1116[/math]

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

00