Revision as of 03:38, 18 January 2024 by Admin (Created page with "You are given the following extract of ultimate mortality rates from a two-year select and ultimate mortality table: {| class="table table-bordered" ! <math>x</math> !! <math>q_{x}</math> |- | 50 || 0.045 |- | 51 || 0.050 |- | 52 || 0.055 |- | 53 || 0.060 |} The select mortality rates satisfy the following: - <math>q_{[x]}=0.7 q_{x}</math> - <math>q_{[x]+1}=0.8 q_{x+1}</math> You are also given that <math>i=0.04</math>. Calculate <math>A_{[50]: 3]}^{1}</math>. <ul c...")
Jan 18'24
Exercise
You are given the following extract of ultimate mortality rates from a two-year select and ultimate mortality table:
[math]x[/math] | [math]q_{x}[/math] |
---|---|
50 | 0.045 |
51 | 0.050 |
52 | 0.055 |
53 | 0.060 |
The select mortality rates satisfy the following: - [math]q_{[x]}=0.7 q_{x}[/math] - [math]q_{[x]+1}=0.8 q_{x+1}[/math]
You are also given that [math]i=0.04[/math].
Calculate [math]A_{[50]: 3]}^{1}[/math].
- 0.08
- 0.09
- 0.10
- 0.11
- 0.12
Jan 18'24
Answer: D
[math]A_{[50]: 3]}^{1}=v q_{[50]}+v^{2} p_{[50]} q_{[50]+1}+v^{3} p_{[50]} p_{[50]+1} q_{52}[/math]
where: [math]v=\frac{1}{1.04}[/math]
[math]q_{[50]}=0.7(0.045)=0.0315[/math]
[math]p_{[50]}=1-q_{[50]}=0.9685[/math]
[math]q_{[50]+1}=0.8(0.050)=0.040[/math]
[math]p_{[50]+1}=1-q_{[50]+1}=0.960[/math]
[math]q_{52}=0.055[/math]
So: [math]A_{[50]: 3]}^{1}=0.1116[/math]