Revision as of 11:53, 18 January 2024 by Admin (Created page with "'''Answer: C''' Let <math>A_{51}^{\text {SULT }}</math> designate <math>A_{51}</math> using the Standard Ultimate Life Table at <math>5 \%</math>. <math display="block"> \begin{aligned} \mathrm{APV}(\text { insurance }) & =1000\left(\frac{1}{1.04}\right)\left(q_{50}+p_{50} A_{51}^{S U L T}\right) \\ & =1000\left(\frac{1}{1.04}\right)[0.001209+(1-0.001209)(0.19780)] \\ & =191.12 \end{aligned} </math> {{soacopyright|2024}}")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Exercise


Jan 18'24

Answer

Answer: C

Let [math]A_{51}^{\text {SULT }}[/math] designate [math]A_{51}[/math] using the Standard Ultimate Life Table at [math]5 \%[/math].

[[math]] \begin{aligned} \mathrm{APV}(\text { insurance }) & =1000\left(\frac{1}{1.04}\right)\left(q_{50}+p_{50} A_{51}^{S U L T}\right) \\ & =1000\left(\frac{1}{1.04}\right)[0.001209+(1-0.001209)(0.19780)] \\ & =191.12 \end{aligned} [[/math]]

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

00