Revision as of 12:45, 18 January 2024 by Admin (Created page with "'''Answer: D''' <math display="block"> \begin{aligned} E(Z) & =\int_{0}^{\infty}{ }_{t} p_{x} \times \mu \times e^{0.05 \times t} e^{-\delta \times t} d t \\ & =\int_{0}^{\infty} e^{-0.03 \times t} \times 0.03 \times e^{0.05 \times t} e^{-0.06 \times t} d t \\ & =\frac{0.03}{0.04} \times\left. e^{-0.04 t}\right|_{0} ^{\infty}=0.75 \\ E\left(Z^{2}\right) & =\int_{0}^{\infty}{ }_{t} p_{x} \times \mu \times e^{0.05 \times 2 \times t} e^{-\delta \times 2 \times t} d t \\ &...")
Exercise
Jan 18'24
Answer
Answer: D
[[math]]
\begin{aligned}
E(Z) & =\int_{0}^{\infty}{ }_{t} p_{x} \times \mu \times e^{0.05 \times t} e^{-\delta \times t} d t \\
& =\int_{0}^{\infty} e^{-0.03 \times t} \times 0.03 \times e^{0.05 \times t} e^{-0.06 \times t} d t \\
& =\frac{0.03}{0.04} \times\left. e^{-0.04 t}\right|_{0} ^{\infty}=0.75 \\
E\left(Z^{2}\right) & =\int_{0}^{\infty}{ }_{t} p_{x} \times \mu \times e^{0.05 \times 2 \times t} e^{-\delta \times 2 \times t} d t \\
& =\int_{0}^{\infty} e^{-0.03 \times t} \times 0.03 \times e^{0.05 \times 2 \times t} e^{-0.06 \times 2 \times t} d t \\
& =\frac{0.03}{0.05} \times\left. e^{-0.05 t}\right|_{0} ^{\infty}=0.6
\end{aligned}
[[/math]]
[math]\operatorname{Var}(Z)=E\left(Z^{2}\right)-[E(Z)]^{2}=0.6-0.75^{2}=0.375[/math]