Revision as of 18:46, 18 January 2024 by Admin (Created page with "'''Answer: D''' {| class="table table-bordered" |- |'''Half-year''' |'''PV of Benefit''' | style = "width:150px" rowspan="5" |PV > 277, 000 if and only if (x) dies in the 2nd or 3rd half years. |- | 2|| <math>300,000 v^{0.5}=(300,000)(1.09)^{-1}=275,229</math> |- | 3 || <math>330,000 v^{1}=(330,000)(1.09)^{-2}=277,754</math> |- | 4 || <math>390,000 v^{2}=(390,000)(1.09)^{-4}=276,286</math> |} Under CF assumption, <math>{ }_{0.5} p_{x}={ }_{0.5} p_{x+0.5}=(0.84)^{0.5...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Exercise


Jan 18'24

Answer

Answer: D

Half-year PV of Benefit PV > 277, 000

if and only if (x) dies in the 2nd or 3rd half years.

2 [math]300,000 v^{0.5}=(300,000)(1.09)^{-1}=275,229[/math]
3 [math]330,000 v^{1}=(330,000)(1.09)^{-2}=277,754[/math]
4 [math]390,000 v^{2}=(390,000)(1.09)^{-4}=276,286[/math]

Under CF assumption, [math]{ }_{0.5} p_{x}={ }_{0.5} p_{x+0.5}=(0.84)^{0.5}=0.9165[/math] and [math]{ }_{0.5} p_{x+1}={ }_{0.5} p_{x+1.5}=(0.77)^{0.5}=0.8775[/math] Then the probability of dying in the [math]2^{\text {nd }}[/math] or [math]3^{\text {rd }}[/math] half-years is [math]\left({ }_{0.5} p_{x}\right)\left(1-{ }_{0.5} p_{x+0.5}\right)+\left(p_{x}\right)\left(1-{ }_{0.5} p_{x+1}\right)=(0.9165)(0.0835)+(0.84)(0.1225)=0.1794[/math]

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

00