Revision as of 00:09, 19 January 2024 by Admin (Created page with "'''Answer: D''' Let <math>Y_{i}</math> be the present value random variable of the payment to life <math>i</math>. <math>E\left[Y_{i}\right]=\ddot{a}_{x}=\frac{1-A_{x}}{d}=11.55 \quad \operatorname{Var}\left[Y_{i}\right]=\frac{{ }^{2} A_{x}-\left(A_{x}\right)^{2}}{d^{2}}=\frac{0.22-0.45^{2}}{(0.05 / 1.05)^{2}}=7.7175</math> Then <math>Y=\sum_{i=1}^{100} Y_{i}</math> is the present value of the aggregate payments. <math>E[Y]=100 E\left[Y_{i}\right]=1155</math> and <ma...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Exercise


Jan 19'24

Answer

Answer: D

Let [math]Y_{i}[/math] be the present value random variable of the payment to life [math]i[/math].

[math]E\left[Y_{i}\right]=\ddot{a}_{x}=\frac{1-A_{x}}{d}=11.55 \quad \operatorname{Var}\left[Y_{i}\right]=\frac{{ }^{2} A_{x}-\left(A_{x}\right)^{2}}{d^{2}}=\frac{0.22-0.45^{2}}{(0.05 / 1.05)^{2}}=7.7175[/math]

Then [math]Y=\sum_{i=1}^{100} Y_{i}[/math] is the present value of the aggregate payments.

[math]E[Y]=100 E\left[Y_{i}\right]=1155[/math] and [math]\operatorname{Var}[Y]=100 \operatorname{Var}\left[Y_{i}\right]=771.75[/math]

[math]\operatorname{Pr}[Y \leq F]=\operatorname{Pr}\left[Z \leq \frac{F-1155}{\sqrt{771.75}}\right]=0.95 \Rightarrow \frac{F-1155}{\sqrt{771.75}}=1.645[/math]

[math]\Rightarrow F=1155+1.645 \sqrt{771.75}=1200.699[/math]

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

00