Revision as of 00:25, 19 January 2024 by Admin (Created page with "'''Answer: C''' <math>\ddot{a}_{[x]: n]}=1+v p_{[x]} \ddot{a}_{x+1: n-1]}=1+(1+k)\left(v p_{x} \ddot{a}_{x+1: n-1}\right)=1+(1+k)\left(\ddot{a}_{x: n]}-1\right)</math> Therefore, we have <math>k=\frac{\ddot{a}_{[x]: n]}-1}{\ddot{a}_{x: n]}-1}-1=\frac{21.167}{20.854}-1=0.015</math> {{soacopyright|2024}}")
Exercise
Jan 19'24
Answer
Answer: C
[math]\ddot{a}_{[x]: n]}=1+v p_{[x]} \ddot{a}_{x+1: n-1]}=1+(1+k)\left(v p_{x} \ddot{a}_{x+1: n-1}\right)=1+(1+k)\left(\ddot{a}_{x: n]}-1\right)[/math]
Therefore, we have
[math]k=\frac{\ddot{a}_{[x]: n]}-1}{\ddot{a}_{x: n]}-1}-1=\frac{21.167}{20.854}-1=0.015[/math]