Revision as of 00:50, 19 January 2024 by Admin (Created page with "For a special fully discrete whole life insurance of 100,000 on (40), you are given: (i) The annual net premium is <math>P</math> for years 1 through <math>10,0.5 P</math> for years 11 through 20, and 0 thereafter (ii) Mortality follows the Standard Ultimate Life Table (iii) <math>\quad i=0.05</math> Calculate <math>P</math>. <ul class="mw-excansopts"><li> 850</li><li> 950</li><li> 1050<li> 1150</li><li> 1250</ul> {{soacopyright|2024}}")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
ABy Admin
Jan 19'24

Exercise

For a special fully discrete whole life insurance of 100,000 on (40), you are given:

(i) The annual net premium is [math]P[/math] for years 1 through [math]10,0.5 P[/math] for years 11 through 20, and 0 thereafter

(ii) Mortality follows the Standard Ultimate Life Table

(iii) [math]\quad i=0.05[/math]

Calculate [math]P[/math].

  • 850
  • 950
  • 1050
  • 1150
  • 1250

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

ABy Admin
Jan 19'24

Answer: D

[math]100,000 A_{40}=P\left[\ddot{a}_{40: \overline{10}}+0.5_{10} \ddot{a}_{40: \overline{10}}\right][/math]

[math]P=\frac{100,000 A_{40}}{\ddot{a}_{40: \overline{10}}+0.5_{10 \mid} \ddot{a}_{40: 10}}=\frac{100,000(0.12106)}{8.0863+0.5(4.9071)}=\frac{12,106}{10.53985}=1148.59[/math]

where

[math]{ }_{10} \ddot{a}_{40: 10}={ }_{10} E_{40}\left[\ddot{a}_{50: 10}\right]=0.60920[8.0550]=4.9071[/math]

There are several other ways to write the right-hand side of the first equation.

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

00