Revision as of 01:36, 19 January 2024 by Admin (Created page with "For a fully discrete 20 -year endowment insurance of 100,000 on (30), you are given: (i) <math>\quad d=0.05</math> (ii) Expenses, payable at the beginning of each year, are: {| class="table table-bordered" |- ! !! colspan="2" | First Year !! colspan="2" |Renewal Years |- | || Percent of Premium || Per Policy || Percent of Premium || Per Policy |- | Taxes|| 4%|| 0 || 4%||0 |- | Sales Commission || 35% || 0 ||2%||0 |- | Policy Maintenance || 0% || 250 ||0% ||50 |} (...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
ABy Admin
Jan 19'24

Exercise

For a fully discrete 20 -year endowment insurance of 100,000 on (30), you are given:

(i) [math]\quad d=0.05[/math]

(ii) Expenses, payable at the beginning of each year, are:

First Year Renewal Years
Percent of Premium Per Policy Percent of Premium Per Policy
Taxes 4% 0 4% 0
Sales Commission 35% 0 2% 0
Policy Maintenance 0% 250 0% 50

(iii) The net premium is 2143

Calculate the gross premium using the equivalence principle.

  • 2410
  • 2530
  • 2800
  • 3130
  • 3280

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

ABy Admin
Jan 19'24

Answer: A

[math]P_{30: 20 \mid}=\frac{1}{\ddot{a}_{30: \overline{20}}}-d \Rightarrow \frac{2,143}{100,000}+0.05=\frac{1}{\ddot{a}_{30: \overline{20}}} \Rightarrow \ddot{a}_{30: 20}=14[/math]

[math]A_{30: \overline{20}}=1-d \ddot{a}_{30: \overline{20}}=1-0.05(14)=0.3[/math]

[math]G \ddot{a}_{30: \overline{20}}=100,000 A_{30: \overline{20}}+\left(200+50 \ddot{a}_{30: \overline{20}}\right)+\left(0.33 G+0.06 G \ddot{a}_{30: \overline{20}}\right)[/math]

[math]14 G=100,000(0.3)+[200+50(14)]+(0.33 G+0.84 G)[/math]

[math]12.83 G=30,900[/math]

[math]G=2408[/math]

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

00