Revision as of 01:41, 19 January 2024 by Admin (Created page with "For a special fully discrete 3 -year term insurance on (75), you are given: (i) The death benefit during the first two years is the sum of the net premiums paid without interest (ii) The death benefit in the third year is 10,000 (iii) {| class="table table-bordered" ! <math>x</math> !! <math>p_{x}</math> |- | 75 || 0.90 |- | 76 || 0.88 |- | 77 || 0.85 |} (iv) <math>\quad i=0.04</math> Calculate the annual net premium. <ul class="mw-excansopts"><li> 449</li><li> 45...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
ABy Admin
Jan 19'24

Exercise

For a special fully discrete 3 -year term insurance on (75), you are given:

(i) The death benefit during the first two years is the sum of the net premiums paid without interest

(ii) The death benefit in the third year is 10,000

(iii)

[math]x[/math] [math]p_{x}[/math]
75 0.90
76 0.88
77 0.85

(iv) [math]\quad i=0.04[/math]

Calculate the annual net premium.

  • 449
  • 459
  • 469
  • 479
  • 489

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

ABy Admin
Jan 19'24

Answer: B

[math]\mathrm{EPV}([/math] premiums [math])=\mathrm{EPV}([/math] benefits [math])[/math]

[math]P\left(1+v p_{x}+v_{2}^{2} p_{x}\right)=P\left(v q_{x}+2 v^{2} p_{x} q_{x+1}\right)+10000\left(v^{3}{ }_{2} p_{x} q_{x+2}\right)[/math]

[math]P\left(1+\frac{0.9}{1.04}+\frac{0.9 \times 0.88}{1.04^{2}}\right)=P\left(\frac{0.1}{1.04}+\frac{2 \times 0.9 \times 0.12}{1.04^{2}}\right)+10000\left(\frac{0.9 \times 0.88 \times 0.15}{1.04^{3}}\right)[/math]

[math]2.5976 P=0.29588 P+1056.13[/math]

[math]P=459[/math]

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

00