Revision as of 01:41, 19 January 2024 by Admin (Created page with "For a special fully discrete 15 -year endowment insurance on (75), you are given: (i) The death benefit is 1000 (ii) The endowment benefit is the sum of the net premiums paid without interest (iii) <math>\quad d=0.04</math> (iv) <math>\quad A_{75: 15}=0.70</math> (v) <math>\quad A_{75: 15 \mid}=0.11</math> Calculate the annual net premium. <ul class="mw-excansopts"><li> 80</li><li> 90</li><li> 100<li> 110<li> 120</ul> {{soacopyright|2024}}")
ABy Admin
Jan 19'24
Exercise
For a special fully discrete 15 -year endowment insurance on (75), you are given:
(i) The death benefit is 1000
(ii) The endowment benefit is the sum of the net premiums paid without interest
(iii) [math]\quad d=0.04[/math]
(iv) [math]\quad A_{75: 15}=0.70[/math]
(v) [math]\quad A_{75: 15 \mid}=0.11[/math]
Calculate the annual net premium.
- 80
- 90
- 100
- 110
- 120
ABy Admin
Jan 19'24
Answer: C
[math]P \times \ddot{a}_{75: 15 \mid}=1000\left(A_{75: 15 \mid}^{1}+15 \times P \times A_{75: 15}\right) \rightarrow P=\frac{1000 A_{75: 15}^{1}}{\ddot{a}_{75: 15 \mid}-15 \times A_{75: 15}}[/math]
[math]A_{75: 15}^{1}=A_{75: 15}-A_{75: 15}=0.7-0.11=0.59[/math]
[math]\ddot{a}_{75: 15 \mid}=\frac{1-A_{75: 15 \mid}}{d}=(1-0.7) / 0.04=7.5[/math]
So [math]P=\frac{590}{7.5-15(0.11)}=100.85[/math]