Exercise
For a fully continuous whole life insurance of 1 on [math](x)[/math], you are given:
(i) [math]\quad L[/math] is the present value of the loss at issue random variable if the premium rate is determined by the equivalence principle
(ii) [math]\quad L^{*}[/math] is the present value of the loss at issue random variable if the premium rate is 0.06
(iii) [math]\delta=0.07[/math]
(iv) [math]\quad \bar{A}_{x}=0.30[/math]
(v) [math]\quad \operatorname{Var}(L)=0.18[/math]
Calculate [math]\operatorname{Var}\left(L^{*}\right)[/math].
- 0.18
- 0.21
- 0.24
- 0.27
- 0.30
Answer: E
In general, the loss at issue random variable can be expressed as:
Using actuarial equivalence to determine the premium rate:
[math]\operatorname{Var}(L)=\left(1+\frac{P}{\delta}\right)^{2} \times \operatorname{Var}\left(\bar{Z}_{x}\right)=\left(1+\frac{0.03}{0.07}\right)^{2} \times \operatorname{Var}\left(\bar{Z}_{x}\right)=0.18[/math]
[math]\operatorname{Var}\left(\bar{Z}_{x}\right)=\frac{0.18}{\left(1+\frac{0.03}{0.07}\right)^{2}}=0.088[/math]
[math]\operatorname{Var}\left(L^{*}\right)=\left(1+\frac{P^{*}}{\delta}\right)^{2} \times \operatorname{Var}\left(\bar{Z}_{x}\right)=\left(1+\frac{0.06}{0.07}\right)^{2}(0.088)=0.304[/math]