Revision as of 01:50, 19 January 2024 by Admin (Created page with "For a special fully discrete whole life insurance policy of 1000 on (90), you are given: (i) The first year premium is 0 (ii) <math>\quad P</math> is the renewal premium (iii) Mortality follows the Standard Ultimate Life Table (iv) <math>\quad i=0.05</math> (v) Premiums are calculated using the equivalence principle Calculate <math>P</math>. <ul class="mw-excansopts"><li> 150</li><li> 160<li> 170<li> 180<li> 190</ul> {{soacopyright|2024}}")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
ABy Admin
Jan 19'24

Exercise

For a special fully discrete whole life insurance policy of 1000 on (90), you are given:

(i) The first year premium is 0

(ii) [math]\quad P[/math] is the renewal premium

(iii) Mortality follows the Standard Ultimate Life Table

(iv) [math]\quad i=0.05[/math]

(v) Premiums are calculated using the equivalence principle

Calculate [math]P[/math].

  • 150
  • 160
  • 170
  • 180
  • 190

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

ABy Admin
Jan 19'24

Answer: D

EPV [math]([/math] Premiums [math])=P a_{90}=P\left(\ddot{a}_{90}-1\right)=(4.1835) P[/math]

[math]\operatorname{EPV}([/math] Benefits [math])=1000 A_{90}=1000(0.75317)=753.17[/math]

Therefore,

[[math]] P=\frac{753.17}{4.1835}=180.03 [[/math]]

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

00