Revision as of 01:51, 19 January 2024 by Admin (Created page with "For a special fully continuous whole life insurance on <math>(x)</math>, you are given: (i) Premiums and benefits: {| class="table table-bordered" ! !! First 20 years !! After 20 years |- | Premium Rate || <math>3 P</math> || <math>P</math> |- | Benefit || <math>1,000,000</math> || 500,000 |} (ii) <math>\quad \mu_{x+t}=0.03, t \geq 0</math> (iii) <math>\delta=0.06</math> Calculate <math>P</math> using the equivalence principle. <ul class="mw-excansopts"><li> 10,13...")
ABy Admin
Jan 19'24
Exercise
For a special fully continuous whole life insurance on [math](x)[/math], you are given:
(i) Premiums and benefits:
First 20 years | After 20 years | |
---|---|---|
Premium Rate | [math]3 P[/math] | [math]P[/math] |
Benefit | [math]1,000,000[/math] | 500,000 |
(ii) [math]\quad \mu_{x+t}=0.03, t \geq 0[/math]
(iii) [math]\delta=0.06[/math]
Calculate [math]P[/math] using the equivalence principle.
- 10,130
- 10,190
- 10,250
- 10,310
- 10,370
ABy Admin
Jan 19'24
Answer: D
[math]\operatorname{EPV}([/math] Premiums [math])=\operatorname{EPV}([/math] Benefits [math])[/math]
[math]\mathrm{EPV}([/math] Premiums [math])=3 P \bar{a}_{x}-2 P_{20} E_{x} \bar{a}_{x+20}[/math]
[[math]]
\begin{aligned}
& =3 P(1 / \mu+\delta)-2 P\left(e^{-20(\mu+\delta)}\right)(1 / \mu+\delta) \\
& =3 P(1 / 0.09)-2 P e^{-1.8}-1 / 0.09 \\
& =29.66 P
\end{aligned}
[[/math]]
[math]\operatorname{EPV}([/math] Benefits [math])=1,000,000 \bar{A}_{x}-500,000{ }_{20} E_{x} \bar{A}_{x+20}[/math]
[[math]]
\begin{aligned}
& =1,000,000(\mu / \mu+\delta)-500,000 e^{-20(\mu+\delta)} \mu / \mu+\delta \\
& =1,000,000(0.03 / 0.09)-500,000 e^{-1.8} 0.03 / 0.09 \\
& =305,783.5
\end{aligned}
[[/math]]
[math]29.66 P=305,783.5[/math]
[[math]]
P=\frac{305,783.5}{29.66}
[[/math]]
[[math]]
P=10,309.62
[[/math]]