Revision as of 01:58, 19 January 2024 by Admin (Created page with "For a whole life insurance of 100,000 on <math>(x)</math>, you are given: (i) Death benefits are payable at the moment of death (ii) Deaths are uniformly distributed over each year of age (iii) Premiums are payable monthly (iv) <math>\quad i=0.05</math> (v) <math>\quad \ddot{a}_{x}=9.19</math> Calculate the monthly net premium. <ul class="mw-excansopts"><li> 530</li><li> 540</li><li> 550</li><li> 560</li><li> 570</li></ul> {{soacopyright|2024}}")
ABy Admin
Jan 19'24
Exercise
For a whole life insurance of 100,000 on [math](x)[/math], you are given:
(i) Death benefits are payable at the moment of death
(ii) Deaths are uniformly distributed over each year of age
(iii) Premiums are payable monthly
(iv) [math]\quad i=0.05[/math]
(v) [math]\quad \ddot{a}_{x}=9.19[/math]
Calculate the monthly net premium.
- 530
- 540
- 550
- 560
- 570
ABy Admin
Jan 19'24
Answer: C
Assuming UDD
Let [math]P=[/math] monthly net premium
[math]\mathrm{EPV}([/math] premiums [math])=12 P \ddot{a}_{x}^{(12)} \cong 12 P\left[\alpha(12) \dot{a}_{x}-\beta(12)\right][/math]
[[math]]
\begin{aligned}
& =12 P[1.00020(9.19)-0.46651] \\
& =104.7039 P
\end{aligned}
[[/math]]
[math]\mathrm{EPV}([/math] benefits [math])=100,000 \bar{A}_{x}[/math]
[[math]]
\begin{aligned}
& =100,000 \frac{i}{\delta} A_{x}=100,000 \frac{i}{\delta}\left(1-d \ddot{a}_{x}\right) \\
& =100,000 \frac{0.05}{\ln (1.05)}\left(1-\frac{0.05}{1.05}(9.19)\right) \\
& =57,632.62
\end{aligned}
[[/math]]
[math]P=\frac{57,632.62}{104.7039}=550.43[/math]