Revision as of 01:59, 19 January 2024 by Admin (Created page with "For a fully continuous 20 -year term insurance policy of 100,000 on (50), you are given: (i) Gross premiums, calculated using the equivalence principle, are payable at an annual rate of 4500 (ii) Expenses at an annual rate of <math>R</math> are payable continuously throughout the life of the policy (iii) <math>\quad \mu_{50+t}=0.04</math>, for <math>t>0</math> (iv) <math>\delta=0.08</math> Calculate <math>R</math>. <ul class="mw-excansopts"><li> 400</li><li> 500</l...")
ABy Admin
Jan 19'24
Exercise
For a fully continuous 20 -year term insurance policy of 100,000 on (50), you are given:
(i) Gross premiums, calculated using the equivalence principle, are payable at an annual rate of 4500
(ii) Expenses at an annual rate of [math]R[/math] are payable continuously throughout the life of the policy
(iii) [math]\quad \mu_{50+t}=0.04[/math], for [math]t\gt0[/math]
(iv) [math]\delta=0.08[/math]
Calculate [math]R[/math].
- 400
- 500
- 600
- 700
- 800
ABy Admin
Jan 19'24
Answer: B
By the equivalence principle,
[[math]]
4500 \bar{a}_{x: \overline{20}}=100,000 \bar{A}_{x: \overline{20}}^{1}+R \bar{a}_{x: \overline{20}}
[[/math]]
where
[[math]]
\begin{aligned}
& \bar{A}_{x: 20 \mid}^{1}=\frac{\mu}{\mu+\delta}\left(1-e^{-20(\mu+\delta)}\right)=\frac{0.04}{0.12}\left(1-e^{-20(0.12)}\right)=0.3031 \\
& \bar{a}_{x: 20 \mid}=\frac{1-e^{-20(\mu+\delta)}}{\mu+\delta}=\frac{1-e^{-20(0.12)}}{0.12}=7.5774
\end{aligned}
[[/math]]
Solving for [math]R[/math], we have
[[math]]
R=4500-100,000\left(\frac{0.3031}{7.5774}\right)=500
[[/math]]